written 8.4 years ago by | • modified 8.4 years ago |
Mumbai university > FE > SEM 1 > Applied Physics 1
Marks: 5M
Year: May 2013
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai university > FE > SEM 1 > Applied Physics 1
Marks: 5M
Year: May 2013
written 8.4 years ago by |
Given:-
Fermi level lies 0.4eV below conduction band
$E_{(F_1 )} = E_C - 0.4$
Concentration is doubled
$n_2 = 2n_1$
To find:-
New position of Fermi level $E_{(F_2 )}$
Solution:
We know that,
$n = N_C e^{-[(E_C-E_F)/kT]}$
$\frac{n}{N_C} = e^{[(E_F-E_C)/kT]}$
$ln(\frac{n}{N_C}) = \frac{E_F - E_C}{kT}$
$E_F - E_C = kT ln(\frac{n}{N_C})$
Initially,
$E_{(F_1 )} - E_C = kT ln(\frac{n_1}{N_C }) ------(i)$
After doubling the concentration,
$E_{(F_2 )} - E_C = kT ln(\frac{n_2}{N_C }) ------(ii)$
Subtracting (i) from (ii),
$E_{(F_2 )} - E_{(F_1 )} = kT [ln(\frac{n_2}{N_C }) - ln(\frac{n_1}{N_C })]$
$E_{(F_2 )} - E_{(F_1 )} = - kTln(\frac{n_1}{n_2})$
$ E_{(F_2 )} - E_C – 0.4 = - kT ln(1/2) \ \ \ [ n_2 = 2n_1]$
Considering room temperature i.e T=300K
$E_{(F_2 )} = E_C - 0.4 - \frac{1.38 × 10^{-23}}{1.6 × 10^{-19}} × 300 ln(1/2)$
$E_{(F_2 )} = E_C – 0.38eV$
Fermi level is below conduction band by 0.38eV