written 8.4 years ago by | • modified 8.4 years ago |
Mumbai university > FE > SEM 1 > Applied Physics 1
Marks: 3M
Year: May 2013
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai university > FE > SEM 1 > Applied Physics 1
Marks: 3M
Year: May 2013
written 8.4 years ago by |
Given:-
Fermi level, $E_f = 2.1eV$
Temperature, T=300K
Probability of Occupancy
(i) $f(E_1) = 0.99$
(ii) $f(E_1) = 0.01$
To Find:-
Energy levels $E_1$ and $E_2$
Solution:
We know that,
$f(E) = \frac{1}{1 + e^{[(E - E_F)/KT]}}$
$\frac{1}{f(E)} = 1 + e^{[(E-E_F)/KT]}$
$e^{[(E - E_F)/KT]} = \frac{1-f(E)}{f(E)}$
Taking ln on both sides,
$\frac{E - E_F}{kT} = ln[\frac{1-f(E)}{f(E)}]$
$E = E_F + kTln[\frac{1 - f(E)}{f(E)}]$
(i) $f(E_1) = 0.99$
$E_1 = 2.1 + \frac{1.38 × 10^{-23}}{1.6 × 10^{-19}} × 300 ln(\frac{0.01}{0.99})$
$E_1 = 1.98eV$
(ii) $f(E_2) = 0.01$
$E_2 = 2.1+ \frac{1.38 × 10^{-23}}{1.6 × 10^{-19}} × 300 ln(\frac{0.99}{0.01})$
$E_2 = 2.22eV$