Assume following FBD, where A is a point of ladder in contact with wall and B is in contact with ground
Let $N_1$ and $N_2$ be the normal reaction at B and A respectively
$\therefore F_{s1} =\mu_1N_1=0.2N_1 \rightarrow (1) \\ F_{s2}=\mu_2N_2=0.3N_2 \rightarrow (1) \\ \sum F_x=0 \\ \therefore -F_{s1}+N_2=0 \\ \therefore N_2=F_{s1} \\ \therefore N_2=0.2 N_1 \rightarrow (3) (from 1) \\ Also \sum F_y=0 \\ \therefore F_{s2}+N_1-60g -25g=0 \\ \therefore 0.3N_2 +N_1 =85g (from 3) \\ \therefore 1.06 N_1=85 g \\ \therefore N_1=80.1887 g \\ From (3) , N_2 =0.2\times 80.1887 g=16.0377 g\\ And , \sum M_B=0 \\ \therefore 60 g \times BC + 25 g \times BD -N_2 \times OA -F_{s2} \times OB=0 \\ \therefore 60 g \times x\cos a +25g \times 1.5 \cos a =N_2 \times 3\sin a +0.3 N_2 \times 3 \cos a \\ \therefore 60 g \times x\cos a \times 37.5 g \cos a =16.0377 g \times 3\sin a +16.0377 g \times3\cos a\\ \therefore 20x +125 =16.0377 \tan a +0.3 \times 16.0377 \rightarrow (4) $
Divide by $ 3g\cos d$
Part I : when $a=50^\circ $
From (4) $,20x + 12.5 =16.0377\tan 50 +0.3\times16.0377 \\ \therefore 20x + 12.5 = 23.9244 \\ \therefore 20x =11.4244 \\ \therefore x=0.5712 m$
The man will be able to climb $0.5712m$ along the ladder.
Part I : when $x=3m$
From (4) $,20\times 3 + 12.5=16.0377\tan a +0.3\times 16.0377 \\ \therefore 72.5=16.0377\tan a + 4.8113 \\ \therefore 67.6887 =16.0377\tan a \\ \therefore a =76.6705^\circ $
The ladder should make an angle of $76.6705^\circ$ with the horizontal so that the man can climb till the top.