written 8.5 years ago by
teamques10
★ 69k
|
•
modified 3.4 years ago
|
Solution:
$i_1=10 \sin (wt) \\
i_2=20 \sin (wt+600) \\
i_3=75 \sin (wt-300) \\
i_1=\dfrac{10}{\sqrt{2}} \angle 0^0=7.071 \angle 0^0=7.071+j0 \\
i_2=\dfrac{20}{\sqrt{2}}\angle60^0=14.142\angle60^0=7.071+j12.247 \\
i_3=\dfrac{75}{\sqrt{2}}\angle-30^0=53.033\angle-30^0=45.928-j26.5165$
Now,
$i=i_1+i_2+i_3 \\
=7.071\angle0^0+14.142\angle60^0+53.033\angle-30^0 \\
60.07+j14.2695 \\
=61.741\angle-13.362^0 \\
i=({\sqrt{2}\times61.741})(\sin(wt-13.362)) \\
i=87.315 \sin(wt-13.362^0) \\
I_m=87.315 A \\
Given \ \ f=50Hz \\
t=0
i=87.315 \sin\bigg[2 \pi \times 50 \times 0 - 13.36 \times \dfrac{\pi}{180}\bigg] \\
=-0.3553 A \\
t=0.001 s \\
i=87.315 \sin \bigg[2\pi \times 50 \times 0-0.001-13.36 \times \dfrac{\pi}{180}\bigg] \\
i=-0.1234 A$