Given:-
APF = 0.68
ρ = 8570 $Kg/m^3$
d = 2.86 $A^0$ = $2.86 × 10^{-10}$ m = 2 × (Radius of an atom) = 2r
i.e. r = 1.43 × 10-10 m
To Find:-
Mass of one Atom (mA)
Solution:-
Given that, APF = 0.68, the crystal structure is of BCC type.
For a BCC structure,
$$r = \frac{\sqrt{3}}{4}a$$
$$1.43 × 10^{-10} = \frac{\sqrt{3}}{4}a$$
$a = 3.302 × 10^{-10}m$
Therefore, Volume of a Single Unit Cell, $V_{Unit} = a^3 = (3.302 × 10^{-10})^3$
∴ $V_{Unit} = 36.102 × 10^{-30}m^3$
Now, Mass of one Unit Cell, $m_{Unit} = ρ × V_{Unit} = 8570 × 36.102 × 10^{-30}$
Therefore, $m_{Unit} =3.087 × 10^{-25}Kg$
Number of Atoms per Unit Cell in a BCC structure is, n = 2
Hence, Mass of a unit cell is the mass of 2 atoms.
$$m_A = \frac{Mass \ \ of \ \ unit \ \ cell}{n} = \frac{3.087 × 10^{-25}}{2}$$
$m_A = 1.543 × 10^{-25} Kg$