written 8.4 years ago by | modified 2.8 years ago by |
Mumbai university > MECH > SEM 3 > Strength Of Materials
Marks: 10M
Year: June 2014
written 8.4 years ago by | modified 2.8 years ago by |
Mumbai university > MECH > SEM 3 > Strength Of Materials
Marks: 10M
Year: June 2014
written 8.4 years ago by |
Assuming supports at point A and B,
$ΣM_A = 0$
$-2000 × 2 - 1500 + V_B × 7 = 0$
$V_B = 785.714 N$
And , $ΣF_X = 0$
$V_A - 2000 + V_B = 0$
Thus, $V_A = 1214.285 N$
Using the Macaulay’s Method,
At any section distant x from A, the BM is given by,
$EI\frac{dy}{dx} = 1214.285x | -2000(x - 2) | - 1500 (x - 4)^0...(i)$
Integrating, we get
$EI\frac{dy}{dx} = 1214.285\frac{x^2}{2} + C_1 |-2000\frac{(x - 2)^2}{2} | -1500 (x - 4)^1.....(ii)$
Integrating, yet again,
$EIy = 1214.285\frac{x^3}{6} + C_1x + C_2 |-2000 \frac{(x - 2)^3}{6}| - 1500\frac{(x - 4)^2}{2}.....(iii)$
At $x = 0 , y = 0$ hence,$C_2 = 0$
At $x = 7 , y = 0$
Thus, $0 = 1214.285 \frac{7^8}{6} + 7C_1 | -2000\frac{(7 - 2)^3}{6} | -1500\frac{(7 - 4)^2}{2}$
$0 = 69416.66 + 7C_1 - 41666.67 - 6750$
$C_1 = -3000$
Thus, slope equation is,
$EI\frac{dy}{dx} = 1214.285\frac{x^2}{2} - 3000 |-2000 \frac{(x - 2)^2}{2} | -1500 (x - 4)^1$
And the deflection equation is,
$EIy = 1214.285\frac{x^3}{6} - 3000x |-2000\frac{(x - 2)^3}{6} | -1500\frac{(x - 4)^2}{2}$
Since, B is a support; deflection at B will always be 0.