0
5.9kviews
A cast iron bracket subjected to bending has a c/s of I shape with unequal flanges. If the section is subjected to shear force of 120kN, draw shear stress distribution diagram over the depth of the se

enter image description here

Mumbai university > MECH > SEM 3 > Strength Of Materials

Marks: 10M

Year: Dec 2013

1 Answer
0
154views

enter image description here

First we determine the moment of inertia

Here, the neutral axis would be at

YNA=Σni=1AiYiΣni=1Ai

In the I-section,

No. Section Area(Ai) Centroid Distance from the base of the section (Yi) AiYi
1 Upper flange 240 × 40 = 9600mm2 40 + 240 + 402=300mm 2880000
2 Web 240 × 40 = 9600mm2 40 + 2402=1600mm 1536000
3 Lower flange 120 × 40 = 4800mm2 402=20 96000
- - Σni=1Ai=24000 - Σni=1AiYi=4512000

Thus,

YNA=Σni=1AiYiΣni=1Ai=451200024000=188mmfrom  the  base

From moment of inertia

I=ni=1(Ixi+Aidi2)

Where, Ixi=112(bd3)

di=YiYNA(Distance  of  the  CG  of  the  section  from   NA)

NO Inertia Ixi in mm4 Area Ai in mm2 di Aid2i
1 1.28 × 106 9600 112 120.442 × 106
2 46.08 × 106 9600 -28 7.5264 × 106
3 0.64 × 106 4800 -168 135.4752 × 106
- Σni=1Ixi=48×106 - - Σni=1Aid2i=263.4436×106

Thus,

I=Σni=1(Ixi+Aid2i)=48×106+263.4436×106

I=311.4436×106mm4

Shear stress distribution

i) Shear stresses at the extreme edges of the flanges is zero

ii) Shear stresses in the upper flange just at the junction of upper flange and web is given by, τ=F×AdI×b

where,

Ad = Moment of area of upper flange about NA

= A(upper flange) × Distance of the CG of upper flange from NA

= 9600 × 112 = 1.0752 × 106

b = Width of the upper flange =240mm

Thus ,

τ=120×103×1.0752×106311.4436×106×240=1.726N/mm2

iii) The shear stress in the web at the junction of web and upper flange will suddenly increase from 1.726  t0  1.726×240/40=10.356N/mm2

iv) The shear stress will be maximum at the NA

here,

Ad = Moment of total area about NA

=Moment of area of upper flange and of web about NA

= 9600 × 112 + 28 × 40 × 28/2 = 1.09088 × 106

b = Width of the web=40mm

Thus ,

τ=120×103×1.09088×106311.4436×106×40=10.508N/mm2

v) Shear stresses in the lower flange just at the junction of lower flange and web is given by,

τ=F×AdI×b

where,

Ad = Moment of area of lower flange about NA

= A(upper flange) × Distance of the CG of lower flange from NA

= 4800 × 168 = 0.8064 × 106

b = Width of the upper flange =240mm

Thus ,

τ=120×103×0.8064×106311.4436×106×240=1.295N/mm2

vi) The shear stress in the web at the junction of web and upper flange will suddenly increase from 1.295 to 1.295× 120⁄40=3.885 N/mm^2

Please log in to add an answer.