written 8.5 years ago by | • modified 8.5 years ago |
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 08
Year : DEC 2015
written 8.5 years ago by | • modified 8.5 years ago |
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 08
Year : DEC 2015
written 8.5 years ago by | modified 2.9 years ago by |
Fitting poisons distribution means finding expected frequencies of
$X: 0, 1, 2,3,4,5,6,7,8$
Now mean $=\dfrac {\sum bixi}{\sum Bi}=m\\ \sum Bixi=500=N\\ \therefore m=\dfrac {986}{500}=1.972$
Poissons distribution of x is
$P(X=x)=\dfrac {e^{-m}\times m^x}{x!}=\dfrac {e^{-1.972}\times (1.972)^x}{x!}$
Expected frequency $=N\times P(x)\\ =500\times \dfrac {e^{-1.972}\times (1.972)^x}{x!}$
Now putting $X=0$
we get $P(X=0)=\dfrac {e^{-1.972}\times 1}{0!}=0.1392$
Expected frequency $N\times P =500 \times 0.1392\\ =70$
Similarly
When $x=1, 2,3,4,5,6,7,8$
We get
$B(x)=137,135,89,44,17,6,2,0$ resp.
$\therefore $ Poisson distribution