written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
Given:
.r= 14; T1 =330K and P1 = 1bar;;er = 1.4
Qp=2Qv
$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k - 1} , \ \ \ \ T_2 = T_1r^{k - 1}$
$T_2 = 300 × 14^{1.4 - 1} = 948$
$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k} , \ \ \ \ P_2 = P_1r^k$
$P_2 = 1 × 14^{1.4 - 1} = 948K$
1.4 = P3 /40;
P3 = 56 bar
P3/T3 = P2/T2
56/T3 = 40/948
T3 = 1327K
Qp = 2 Qv
Cp(T4-T3) = 2 Cv (T3-T2)
1000 (T4-1327) = 2 × 720 × (1327 – 948)
T4 = 1872K
V1 = RT1/P1 = 0.924 = V5
V2 = RT2/P2 = 0.066 = V3
V4 = RT4/P4 = 0.094
$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k - 1}$
$T5/T4 = (V4/V5)^{(k-1)}$
$T5 = 1872 × (0.094/0.924)^{0.4} = 750K$
I) cut off ratio
rc = V4/V3 = T4/T3 = 1872/1327 = 1.41
II) Work done
W = Qin – Qout = Cp(T4 - T3) + Cv (T3 -T2) – Cv (T5 - T4) = 1000(1872 - 1327) + 720(1327 - 948) – 720
(750-330) = 515 kJ/kg
III) Efficiency
Thermal efficiency = 1 – {(T5 – T1)/(T3 – T2) + k(T4 – T3)}
Thermal efficiency = 1 – {(750 – 330)/(1327 – 948) + 1.4(1872 – 1327)} = 0.63