Given:
$T_1= 310K, P_1 = 1 bar, V_1/V_2 (Comp Ratio) = 10, Q = 2800 kJ/kg, P_3 = P_4 = 70 bar$.
Solution:
At 1, applying Ideal Gas Equation,
$P_1V_1 = RT_1$
$10^5 × V_1 = 287 × 310$
$V_1 = 0.8897m^3/kg$
Therefore
$V_2 = V_1/10 = 0.08897^{1.4}$
Now, for process 1-2,
$P_1V_1^y = P_2V_2^y$
$10^5 × 0.8897^{1.4} = P_2 × 0.08897^{1.4}$
$P_2 = 25.1188 bar$
At 2, applying ideal gas eqaution,
$P_2V_2 = RT_2$
$25.118 × 10^5 × 0.08897 = 287 × T_2$
$T_2 = 778.6828K$
For Process 2-3,
$\frac{P_3}{P_2} = \frac{T_3}{T_2}$
$\frac{70}{25.1188} = \frac{T_3}{778.6828}$
$T_3 = 2170K$
$V_3 = V_2 = 0.08897m^3/kg$
Now,
$Q_v = C_v(T_3 - T_2) = 0.718(2170 - 778.6828) = 998.965kJ/kg$
$Q_p = Q - Q_v = 2800 - 998.965 = 1801.034kJ/kg$
Therefore
$Q_p = C_p(T_4 - T_3) = 1.005(T_4 - 2170)$
$T_4 = 3962.07K$
For process 3-4,
$\frac{V_3}{V_4} = \frac{T_3}{T_4}$
$\frac{0.08897}{V_4} = \frac{2170}{3962.07}$
$V_4 = 0.162445m^3/kg$
Now,
$V_5 = V_1 = 0.8897m^3/kg$
Now, for process 4-5,
$P_5V_5^y = P_4V_4^y$
$P_5 × 0.8897^{1.4} = 70 × 10^5 × 0.162445^{1.4}$
$P_5 = 6.4736 bar$
At 5, applying Ideal Gas Equation,
$P_5V_5 = RT_5$
$6.4736 × 10^5 × 0.8897 = 287 × T_5$
$T_5 = 2006.816K$
Therefore
$Q_{out} = C_v(T_5 - T_1) = 0.718(2006.816 - 310) 1218.313kJ/kg$
$W = Q - Q_{out} = 1581.68kJ/kg$
Now, efficiency is given as,
$η = \frac{W}{Q} = \frac{1581.68.68}{2800} = 0.5648 = 56.48 %$
The Mean Effective Pressure is given as,
$MEP = \frac{W}{V_1 - V_2} = \frac{1581.68 × 10^3}{0.8897 - 0.08897} = 19.7529 × 10^5 = 19.7529 bar$