0
1.6kviews
A continuous random variable has probability density function $f(x) = 6(x - x)^2, 0\leq x\leq i,$ Find (i) mean (ii) variance.
1 Answer
written 8.4 years ago by |
Mean = E (x)
$$=\int\limits_{-\infty}^{\infty}x.f(x).dx$$
$=\int\limits_0^1x.6(x-x^2)dx\\ =6\int\limits_0^1(x^2-x^3)dx\\ =6 \Bigg[\dfrac {x^3}3-\dfrac {x^4}4\Bigg]_0^1 =6\Bigg[\Bigg(\dfrac {1^3}3-\dfrac {1^4}4\Bigg)-(0-0)\Bigg] \\ =0.5\\ Consider \\ E(x^2)=\int\limits_{-\infty}^{\infty}x^2.f(x)dx \\ =\int\limits_0^1 x^2.6(x-x^2) dx\\ =6\int\limits_0^1[x^3-x^4]dx\\ =6\Bigg[\dfrac {x^4}4-\dfrac {x^5}5\Bigg]_0^1\\ =6\Bigg[\Bigg(\dfrac {1^4}4-\dfrac {1^5}5\Bigg)-(0-0)\Bigg] \\ =0.3$
Variance $= E (x^2) – [E(x)]^2\\ = 0.3 – 0.5^2 \\ = 0.05$
Hence, Mean $= 0.5$ and variance $= 0.05$