0
4.1kviews
Find the degree of the Bezier curve controlled by three points (4, 2), (0, 0) and (2, 8). Also find the equation of the Bezier curve in parametric format with parameter u.

Mumbai University > Mechanical Engineering > Sem 7 > CAD/CAM/CAE

Marks: 7 M

Year: May 2012

1 Answer
0
154views

Consider the three control points that define a Bezier curve, i.e., P0 (4, 2), P1 (0, 0) and P2 (2, 8).

Number of points, k = 3

Degree of Bezier curve, n=k-1=3-1=2

Now, to obtain the equation of the Bezier curve in parametric format with parameter ‘u’, we know that

$P(u)= \sum_{i=0}^n P_i×B_{i,n} (u)$

where, n=2 and $P_i$ is the $i^{th}$ control point and B_(i,n) is defined as,

$B_{i,n} = ^nC_r × u^i (1- u)^{n-i}$

Hence,

$P_0 (4,2) and B_{0,2} = (1-u)^2 \\ P_1 (0,0) and B_{1,2} = 2u(1-u) \ and \\ P_2 (2,8) and B_{2,2} =u^2 \\ Thus, P(u)=P_0×B_0,2 (u)+P_1×B_1,2 (u)+P_2×B_{2,2} (u) \\ P(u)=P_0×〖(1-u)〗^2 +P_1×2u(1-u)+P_2×u^2$

which is the equation of the Bezier curve.

It can be further be simplified and written in matrix form as,

$P(u) = \begin{bmatrix} u^2 & u & 1 \\ \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} P_0 \\ P_1 \\ P_2 \end{bmatrix}$

$P(u) = \begin{bmatrix} u^2 & u & 1 \\ \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 4 & 2 \\ 0 & 0 \\ 2 & 8 \end{bmatrix}$

$P(u) = \begin{bmatrix} u^2 & u & 1 \\ \end{bmatrix}$ $\begin{bmatrix} 6 & 10 \\ -8 & -4 \\ 4 & 2 \end{bmatrix}$

Please log in to add an answer.