0
2.1kviews
Evaluate $\int(\overline z + 2z)dz$ along the circle $x^2+y^2 = 1.$
1 Answer
written 8.5 years ago by | • modified 8.5 years ago |
$x^2+ y^2 = 1$ is a circle with center $(0,0)$ and radius $= 1$ $$\text { put }z=reiθ = 1 eiθ$$
$$∴dz = eiθ . idθ $$
and, $= e^{-iθ} $
$$∴ = . ie^{iθ}dθ$$
$$= i . dθ$$
$$= i [1θ +]_0^{2π}$$
$$= i ]$$
Now, $$= \cos 4π + i \sin 4π = 1 + i(0) = 1$$
$$∴ = i{ 2π + - }$$
$$∴ = 2iπ$$