Given:
P1=140 kPa; v1 = 70m/s; T1 = 290K;
P2 = 350kPa; v2=110m/s; T2=400K
P0= 100kPa; T0= 280K;
Solution:
i) Finding work
Q-W = ∆Potential energy + ∆Kinetic energy + ∆Pressure energy
$W = mg(z2-z1) + 1/2m (v2^2 – v1^2) + (H2-H1)$
Assuming m=1kg and Q=0 (adiabatic process)
$-W= 9.8 × (0-0) + ½ × 1 × (110^2 – 70^2) + mCp (T2-T1)$
= 3600 + 1 × 1000 × ( 400-290)
W = -113600 J/kg
ii) Finding minimum work
$∆Availability= ∆H + ∆Heat transfer + ∆V^2/2$
$A2-A1 = H2-H1 + T0(S2-S1) + (V2^2-V1^2)/2$
$= Cp(T2-T1) + T0( (mR × ln(p1/p2) + mCp × ln(T2/T1) ) + (V2^2-V1^2)$
$= 1000 (400-290) + 280 (1 × 280 × ln(140/350) + 1 × 1000 × ln(400/290) ) + (110^2-70^2)$
= 97250 J/kg
So, minimum work = Wrev = A1-A2 = -97.25 kJ/kg
iii) Finding irreversibility
I = Wrev-W = -97.25 – (-113.6) = 16.35 kJ/kg
$(V2^2-V1^2)/2$