Given,
ṁh=16.5 kg/s (Mass flow rate of Hot fluid)
th1=650℃=923K (Entry Temperature of Hot fluid )
Cph=3.55 kJ/kgK = 3550 kJ/kgK (Specific Heat of Hot fluid)
ṁc=20.5 kg/s (Mass flow rate of Cold Fluid)
tc1=100℃=373K (Entry temperature of cold fluid)
Cpc=4.2 kJ/kgK = 4200 J/kgK (Specific Heat of Cold Fluid)
U=0.95KW/m2K = 950W/m2K (Overall heat transfer coefficient)
A=44m2 (Common area between two fluids)
Find:
For counter flow and parallel flow arrangements
(1) th2 (Exit temperature of Hot fluid)
(2) tc2 (Exit temperature of Cold fluid)
Solution:
Case (1) Counter flow arrangement
Heat Capacity of Hot fluid
Ch=ṁh.Cph=16.5×3550
Ch=58575 J/kgK
Heat Capacity of Cold fluid
Cc=ṁc.Cpc=20.5×4200
Cc=86100 J/kgK
Heat Capacity Ratio
C===5857586100
C=0.68
Number of Transfer Units
NTU=U.ACmin=950×4458575
NTU=0.713
Effectiveness (For counter flow arrangement)
ε=1-e-NTU (1-C)1-C.e-NTU (1-C)=1-e-0.713(1-0.68)1-0.68×e-0.713(1-0.68)
ε=0.444
as Ch=Cmin
ε=th1-th2th1-tc1
∴ 0.444=923-th2923-373
∴ th2=678.8K=405.8℃
Energy balance equation
Heat rejected by Hot fluid = Heat gained by Cold fluid
ṁh.Cph.(th1-th2)=ṁc.Cpc.(tc2-tc1)
16.5×3550×(923-678.8)=20.5×4200×(tc2-373)
∴ tc2=539.132K=266.132℃
Case (2) Parallel flow arrangement
Effectiveness (For parallel flow arrangement)
ε=1-e-NTU (1+C)1+C=1-e-0.713(1+0.68)1+0.68
ε=0.415
also,
ε=th1-th2th1-tc1
∴ 0.415=923-th2923-373
∴ th2=694.75K=421.75℃
Energy balance equation
Heat rejected by Hot fluid = Heat gained by Cold fluid
ṁh.Cph.(th1-th2)=ṁc.Cpc.(tc2-tc1)
16.5×3550×(923-694.75)=20.5×4200×(tc2-373)
∴ tc2=528.281K=255.281℃