written 8.5 years ago by |
A heat pipe is a heat-transfer device that combines the principles of both thermal conductivity and phase transition to efficiently manage the transfer of heat between two solid interfaces.
At the hot interface of a heat pipe a liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface. The vapor then travels along the heat pipe to the cold interface and condenses back into a liquid – releasing the latent heat. The liquid then returns to the hot interface through capillary action, centrifugal force, or gravity, and the cycle repeats. Due to the very high heat transfer coefficients for boiling and condensation, heat pipes are highly effective thermal conductors. The effective thermal conductivity varies with heat pipe length, and can approach 100 kW/(m⋅K) for long heat pipes, in comparison with approximately 0.4 kW/(m⋅K) for copper.
Different types of heat pipes
In addition to standard, Constant Conductance Heat Pipes (CCHPs), there are a number of other types of heat pipes, including:
- Vapor Chambers (flat heat pipes), which are used for heat flux transformation, and isothermalization of surfaces
- Variable Conductance Heat Pipes (VCHPs), which use a Non-Condensable Gas (NCG) to change the heat pipe effective thermal conductivity as power or the heat sink conditions change
- Pressure Controlled Heat Pipes (PCHPs), which are a VCHP where the volume of the reservoir or the NCG mass can be changed, to give more precise temperature control
- Diode Heat Pipes, which have a high thermal conductivity in the forward direction, and a low thermal conductivity in the reverse direction
- Thermosyphons, which are heat pipes where the liquid is returned to the evaporator by gravitational/accelerational forces,
- Rotating heat pipes, where the liquid is returned to the evaporator by centrifugal forces.