written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
Given,
$t=20℃=293K$ (Temperature of air)
$v=6m/s$ (Velocity of air)
$Ac=40cm×80cm=3200cm^2=0.32m^2$ (Cross sectional area of duct)
$L=1m$ (Length of duct)
$Δt=1℃$ (Temperature difference)
$ν=15×10{-6}m^2/s$ (Kinematic viscosity)
$α=7.7×10{-2}m^2/h=2.138×10{-5}m^2/s$ (Thermal diffusivity)
$K=0.026W/mK$ (Thermal conductivity)
$Nu=0.023(Re)^{0.8}×(Pr)^{0.4}$
Assuming Cp=1.005kJkgK=1005J/kgK (Specific heat of air)
Find: (1) Q(Heat loss from duct)
Solution:
Characteristic length
l=4×c/s area wetted perimeter=4×0.322(0.4+0.8)
l=0.533 m
Thermal Diffusivity
α=KρCp
∴2.138×10-5=0.026ρ×1005
∴ρ=1.21kg/m3
Reynold’s number
Re=ρvlμ=ρvlρ.ν=v.lν=6×0.53315×10-6
Re=213200
Prandtl’s number
Pr=μCpK=ρ.ν.CpK=1.21×15×10-6×10050.026
Pr=0.701
Nusselt’s number
Nu=0.023(Re)0.8×(Pr)0.4=0.023(213200)0.8×(0.701)0.4
Nu=365.632
Also,
Nu=hlK
∴365.632=h×0.5330.026
∴h=17.835 W/m2K
Heat loss from duct per unit length per unit temperature
Q=h.As.(∆t)= 17.835×[2×(0.4+0.8)×1]×(1)
∴Q=42.804 W