written 8.4 years ago by |
Step 1: Determination of dimension of all variables
Variables | Units | Dimensiond |
---|---|---|
ρ | kg/m3 | ML-3 |
v | m/s | LT-1 |
μ | N.sm2=kg.ms2×sm2=kgm.s | ML-1T-1 |
l | m | L |
h | Wm2K=Nms×1m2K,=kg.ms2×ms×1m2K=kgs3K | MT-3θ-1 |
K | WmK=Nms×1mK,=kg.ms2×ms×1mK=kg.ms3K | MLT-3θ-1 |
Cp | JkgK=Nmkg.K×kg.ms2×mkg.K | L2T-2θ-1 |
Step 2: Number of variables (m) = 7
Step 3: Number of basic dimension (n) = 4
Step 4:Non-dimensional number that can be obtained=m-n=7-4=3
Step 5:
Selecting the reference variable as below
(1) l → geometrical property
(2) μ →fluid property
(3) v →flow property
(4) K →thermal property
By Buckingham π theorem
L0M0T0θ0=la μbνcKdρ
L0M0T0θ0 = La(ML-1T-1)b (LT-1)c (MLT-3θ-1)d(ML-3)
L0M0T0θ0=L(a-b+c+d-3) M(b+d+1) T(-b-c-3d) θ-d
∴ -d=0 →d=0
b+d+1=0 →b=-1
-b-c-3d=0 →c=1
a-b+c+d-3=0 →a=1
∴ First non-dimensional number
π1= la μbνcKdρ= l1 μ-1 ν1 K0 ρ
∴π1= ρvlμ→Re (Reynold's number)
Calculation for π2
L0M0T0θ0=la μbνcKd h
L0M0T0θ0=La(ML-1T-1)b (LT-1)c (MLT-3θ-1)d(MT-3θ-1)
L0M0T0θ0=L(a-b+c+d) M(b+d+1) T(-b-c-3d-3) θ-d-1
∴ -d-1=0 →d=-1
b+d+1=0 →b=0
-b-c-3d-3=0 →c=0
a-b+c+d=0 →a=1
∴ Second non-dimensional number
π2= la μbνcKd h= l1 μ0 ν0 K-1 h
∴π2= hlK→Nu (Nusselt's number)
Calculation for π3
L0M0T0θ0=la μbνcKdCp
L0M0T0θ0=La(ML-1T-1)b (LT-1)c (MLT-3θ-1)d(L2T-2θ-1)
L0M0T0θ0=L(a-b+c+d+2) M(b+d) T(-b-c-3d-2) θ-d-1
∴ -d-1=0 →d=-1
b+d=0 →b=1
-b-c-3d-2=0 →c=0
a-b+c+d+2=0 →a=0
∴ Third non-dimensional number
π3= la μbνcKdCp= l0 μ1 ν0 K-1 Cp
∴π2= μCpK→Pr (Prandtl's number)
By Buckingham’s π theorem
f (π1, π2, π3)=0
∴f (Re, Nu, Pr)=0
∴Nu=ϕ (Re.Pr)
OR
$Nu=C.Re^m.Pr^n$
Where,
m, n, c are the constants and can be determined by experimental method.