written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
Given,
$A=1.5×1=1.5m^2 \ (Surface \ Area \ of \ furnace \ door) \\
ts=70℃=343K \ (Door \ surface \ temperature) \\
tb=30℃=303K \ (Surrounding \ temperature) \\
tf=50℃=323K \ (Mean \ film \ temperature) \\
ρ=1.093kg/m^3 \ (Density \ of \ air) \\
Cp=1.005kJ/kgK \ (Specific \ heat \ of \ air) \\
ν=17.95×10^{-6}m^2/s \ (Kinematic \ viscosity) \\
K=0.02826W/mK \ (Thermal \ conductivity)\\
Pr=0.698 \ (Prandtl \ number) \\
Nu=0.13(Ra)^{1/3}$
Find: (1) Q (Heat loss from door)
Solution:
Characteristic Length
l= height of door
l = 1.5m
Grashoff’s Number
Gr = ρ2.l3(β.g.∆t)μ2 = ρ2.l3(β.g.∆t)(ρ.ν)2
Gr = l3(β.g.∆t)ν2
…(1)
Temperature Coefficient
β = 1tf = 1323
$β = 3.0959 × 10^{-3}$
∆t=|ts-tb|=|343-303|
∆t=40
∴From(1)
Gr=1.53×(3.0959×10-3×9.81×40)(17.95×10-6)2
Gr=1.272×1010
Nusselt’s Number
Nu=0.13(Ra)1/3= 0.13(Gr.Pr)1/3=0.13(1.272×1010×0.698)1/3
Nu=269.189
Also,
Nu=h.lK
269.189=h×1.50.02826
∴h=5.0715 W/m2K
Heat Transfer Rate
Q=h.As.(|ts-tb|)= 5.0715×1.5×(|343-303|)
Q=304.29 W