Given,
δ1=15cm=0.15m $\hspace{1cm}$ (Thickness of slab)
K=10W/mK $\hspace{1.8cm}$ (Thermal conductivity of slab material)
t1=400℃=673K $\hspace{1.2cm}$ (Inside temperature of slab)
δ2=10cm=0.1m $\hspace{1.2cm}$ (Thickness of insulation)
Kins=30W/mK $\hspace{1.4cm}$ (Thermal conductivity of insulation material)
t4=28℃=301K $\hspace{1.4cm}$ (Ambient air temperature)
h=15W/m2K $\hspace{1.7cm}$ (Convective heat transfer coefficient of ambient air)
A=1m2 $\hspace{2.5cm}$ (cross sectional area of slab)
Find:
(1) Q (Heat transfer rate)
(2) t2 (Outside surface temperature of slab)
(3) t3 (Outside surface temperature of insulation)
Solution:
Calculation for thermal resistance
Thermal resistance due to rectangular slab
R1 = δ1K1A1=0.1510×1
R1 = 0.015 K/W
Thermal resistance due to insulation
R2 = δ2K2A2=0.130×1
R2 = 3.333×10-3 K/W
Thermal resistance due to convective layer
R3 = 1h3A3=115×1
R3 = 0.066 K/W
Total thermal resistance
R = R1+R2+R3=0.015+3.333×10-3+0.066
R = 0.0843 K/W
Heat transfer rate
Q = dtR=t1-t4R=673-3010.0843
Q = 4412.811 W
also,
Q = t1-t2R1
4412.811 = 673-t20.015
t2 = 606.807K=333.807℃
Q = t2 - t3R2
4412.811 = 606.807 - t33.333 × 10-3
t3 = 592.099K = 319.099℃