written 8.4 years ago by | • modified 4.0 years ago |
Use $Fe415$ steel and M20 grade concrete. Use following BM coefficient. Negative moment at continuous
written 8.4 years ago by | • modified 4.0 years ago |
Use $Fe415$ steel and M20 grade concrete. Use following BM coefficient. Negative moment at continuous
written 6.1 years ago by | • modified 6.1 years ago |
Short span | Long span |
---|---|
0.0625 | 0.047 |
Positive moment at midspan
Short span | Long span |
---|---|
0.037 | 0.037 |
Assume beam width (b) = 230mm
$$ \frac{l_y}{l_x} = \frac{5+0.23}{4+0.23} = \frac{5.23}{4.23} = 1.23 \lt 2$$
Therefore, it is a two way slab
$$ d = \frac{short \space effective \space span}{(S/D \space ratio \times M.F)} $$
$$ dr = \frac{4230}{26 \times 1.4} = 116.2 = 125$$
$$ D = dr + d' = 125 + 25 = 150mm $$
Load Calculation
$$ D.L = D \times 25 = 0.15 \times 25 = 3.75 kN/m^2 $$
$$ L.L = 1 kN/m^2 $$
$$ F.F = 1kN/m^2 $$
$$ Total = 8.25 kN/m^2 $$
$$ Factored load (w_d) = 8.25 \times 1.5 = 12.375 = 12.375 kN/m $$
$$ +ve \space BM(M_{ux} = a_x w d l x^2 = 0.037 \times 12.7 \times 4.23^2 $$
$$ (M_{ux}) +ve = 8.19lNm $$
$$ (M_{ux}) -ve = a_x w d (l x)^2 = 0.0625 \times 12.37 \times 4.23^2 $$
$$ (M_{ux}) -ve = 13.83 kNm $$
$$ (M_{uy}) -ve = a_y w d (l x)^2 = 0.047 \times 13.37 \times 4.23^2 $$
$$ (M_{uy}) -ve = 10.41 kNm $$
$$ (M_{umax} = 0.138 f_{ck} bd^2 = 0.138 \times 20 \times 1000 \times 125^2 $$
$$ = 43.125 kNm \gt [(M_{ux}) + ve(M_{uy} + ve(M_{ux} - ve (M_{uy} -ve $$
Therefore Safe.
$$ (Astx) + ve = \frac{0.5 \times 20 \times 1000 \times 125}{415} \times [ 1 - \sqrt{1 - \frac{4.6 \times 8.19 \times 10^6}{20 \times 1000 \times 125^2}} ]$$
$$ =187.39 mm^2 \approx 188mm^2 $$
$$ (Astx) - ve = \frac{0.5 \times 20 \times 1000 \times 125}{415} \times [ 1 - \sqrt{1 - \frac{4.6 \times 13.83 \times 10^6}{20 \times 1000 \times 125^2}} ]$$
$$ =324 mm^2 $$
Assume 8mm $\phi$ bars $\phi_x = \phi_y = 8d_y = d - \frac{d_x}{2} - \frac{d_y}{2} $
$ = 125 - \frac{8}{2} - \frac{8}{2} = 117 mm$
$$ (Asty) + ve = \frac{0.5 \times 20 \times 1000 \times 117}{415} \times [ 1 - \sqrt{1-\frac{4.6 \times 8.19 \times 10^6}{20 \times 1000 \times 117^2}} $$
$$= 201 mm^2$$
$$ (Asty) - ve = \frac{0.5 \times 20 \times 1000 \times 117}{415} \times [ 1 - \sqrt{1-\frac{4.6 \times 10.41 \times 10^6}{20 \times 1000 \times 117^2}} $$
$$= 258 mm^2$$
$$ Astmin = \frac{0.12bd}{100} = \frac{0.12 \times 1000 \times 150}{100}$$
$$ 180 mm^2 \lt [(Astx) = ve, (Astx) - ve, (Asty) + ve, (Asty) - ve] $$
Therefore Safe.
Spacing -ve = $\frac{1000 \times \pi / 4 \times 8^2}{324} = 155.14 \approx 150mm$
Spacing -ve = $\frac{1000 \times \pi / 4 \times 8^2}{258} = 194.82 \approx 175mm$