written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics I
Marks: 12 M
Year: May 2014
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics I
Marks: 12 M
Year: May 2014
written 8.4 years ago by | • modified 8.4 years ago |
$$\text{Fig1 Common Base amplifier}$$
$$\text{Fig2 AC equivalent circuit of common base amplifier}$$
$$\text{Fig3 re model of common base amplifier}$$
Input impedance:
From the diagram we can conclude that voltage across resistor $R_E$ and $r_e$ is same i.e. $V_i$ hence they are in parallel
$Z_i=R_E||r_e \\ Since \ R_E \gt \gt r_e \\ \boxed{Z_i≈r_e}$
Voltage gain:
$A_v=\dfrac{V_o}{V_i} \\ V_o=-I_oR_L \\ I_o=\dfrac{I_CR_C}{R_C+R_L} \\ V_o=-\dfrac{I_CR_CR_L}{R_C+R_L} \\ V_o=-I_C(R_C||R_L) \\ V_o=-\alpha I_E()R_C||R_L) \\ V_i=-I_Er_E \\ A_V=\dfrac{-\alpha I_E(R_C||R_L)}{-I_Er_E} \\ A_V=\dfrac{\alpha(R_C||R_L)}{r_E}$
$$\boxed{A_V=\dfrac{\alpha(R_C||R_L)}{r_E}}$$
Current Gain
$A_i=\dfrac{I_o}{I_i} \\ A_i=\dfrac{-\dfrac{I_CR_C}{R_C+RL}}{I_i} \\ A_i=\dfrac{-\alpha I_E\dfrac{R_C}{R_C+R_L}}{I_i} \\ I_E=\dfrac{-I_iR_E}{R_E+r_e} \\ A_i=\dfrac{-\alpha\dfrac{-I_iRE \ R_C}{R_E+r_eR_C+R_L}}{I_i} \\ \boxed{A_i=\alpha\dfrac{R_E}{R_E+r_e}\dfrac{R_C}{R_C+R_L}}$
Output impedance
Make input zero i.e. $V_i=0$ hence $I_E=0$ Hence $I_C=0$
$$\text{Fig4. Determining ZO for common base amplifier}$$
$$\boxed{Z_O=R_C||R_L}$$