written 8.5 years ago by |
The heat from the earth's own molten core can be converted into electricity. Currently, the most common way of capturing the energy from geothermal sources is to tap into naturally occurring "hydrothermal convection" systems, where cooler water seeps into Earth's crust, is heated up, and then rises to the surface. Once this heated water is forced to the surface, it is a relatively simple matter to capture that steam and use it to drive electric generators. Geothermal power plants drill their own holes into the rock to more effectively capture the steam.
There are three basic designs for geothermal power plants, all of which pull hot water and steam from the ground, use it, and then return it as warm water to prolong the life of the heat source. In the simplest design, known as dry steam, the steam goes directly through the turbine, then into a condenser where the steam is condensed into water. In a second approach, very hot water is depressurized or "flashed" into steam which can then be used to drive the turbine.
In the third approach, called a binary cycle system, the hot water is passed through a heat exchanger, where it heats a second liquid—such as isobutane—in a closed loop. Isobutane boils at a lower temperature than water, so it is more easily converted into steam to run the turbine. These three systems are shown in the diagrams below.
Once this heated water is forced to the surface, it is a relatively simple matter to capture that steam and use it to drive electric generators. Geothermal power plants drill their own holes into the rock to more effectively capture the steam. There are three basic designs for geothermal power plants, all of which pull hot water and steam from the ground, use it, and then return it as warm water to prolong the life of the heat source. In the simplest design, known as dry steam, the steam goes directly through the turbine, then into a condenser where the steam is condensed into water. In a second approach, very hot water is depressurized or "flashed" into steam which can then be used to drive the turbine.
In the third approach, called a binary cycle system, the hot water is passed through a heat exchanger, where it heats a second liquid—such as isobutane—in a closed loop. Isobutane boils at a lower temperature than water, so it is more easily converted into steam to run the turbine. These three systems are shown in the diagrams below.