Solution:
Reflex klystron,
Given:
$$
\begin{aligned}
& V_0=625 \mathrm{~V}, L=1 \mathrm{~mm} \quad R_{s h}=14 \mathrm{k} \Omega \\
& f=8 \mathrm{CH}_2
\end{aligned}
$$
the device operating mode is $13 / 4$
Hence $\quad n=2$
calculation,
$$
\begin{aligned}
& \text { a) Reseller voltage }\left(v_\gamma\right) \\
& \frac{v_0}{\left(v_r+v_0\right)^2}=\frac{e}{m} \frac{(2 n \pi-\pi / 2)^2}{8 \omega^2 L^2} \\
&
\end{aligned}
$$
$$
\frac{625}{\left(V_0+625\right)^2}=\frac{1.759 \times 10^{11} \times(2 \times 2 \times \pi-\pi / 2)^2}{8 \times(2 \pi \times 8 \times 109)^2\left(1 \times 10^{-3}\right)^2}
$$
on simplification, we set
$$
\left[v_\gamma=145.701 \text { volt }\right]
$$
b) Efficiency:
The efficiency is expressed as -
$$
\eta=\frac{2 x^{\prime} J_1\left(x^{\prime}\right)}{2 n \pi-\pi / 2}=2 x i
$$
where $x^{\prime}=2.408$
$$
J_1\left(x^{\prime}\right)=0.52
$$
$$
=\frac{2 \times 2.408 \times 0.52}{2 \times 2 \times \pi-\pi / 2} \times 100=22.7 \%
$$