Solution:
For copper, $\sigma=5.813 \times 10^7 \mathrm{~S} / \mathrm{m}$, so the skin depth is
$$
\delta_s=\sqrt{\frac{2}{u^\mu \mu}}=2.088 \times 10^{-6} \mathrm{~m}
$$
and the propagation constant is,
,
$$
\gamma=\frac{1+j}{\delta_s}=(4.789+j 4.789) \times 10^5 \mathrm{~m}^{-1}
$$
The intrinsic impedance is, From,
$$
\eta=\frac{1+j}{\sigma \delta_3}=(8.239+j 8.239) \times 10^{-3} \Omega
$$
which is quite small relative to the impedance of free-space $(\eta)=377 \Omega)$. The reflection coefficient is then,
$$
\mathrm{T}=\frac{\eta-\eta_0}{\eta+\eta_n}=1 \angle 179.99^{\circ}
$$
(practically that of an ideal short circuit), and the transmission coefficient is,
$$
T=\frac{2 \eta}{\eta+\eta_0}=6.181 \times 10^{-5} \angle 45^5
$$