Solution:
We know that the pulse broadening is given by,
$
\Delta \tau=\mathrm{D}_{\text {mat }}(\lambda) \mathrm{L} \Delta \lambda\\
$
where $D_{\text {mat }}(\lambda)$ defines material dispersion and is given by
$
\mathrm{D}_{\mathrm{mat}}(\lambda)=\frac{\lambda}{c}\left[\frac{d^2 n}{d \lambda^2}\right]=\frac{1}{\lambda c}\left[\lambda^2 \frac{d^2 n}{d \lambda^2}\right]
$
Given,
$\quad \lambda=0.85 \mu \mathrm{m},\left[\lambda^2 \frac{d^2 n}{d \lambda^2}\right]=0.025$ and $c=3 \times 10^5 \mathrm{~km} / \mathrm{s}$
$\therefore \quad D_{\text {mat }}(\lambda)=98.1 \mathrm{ps} \mathrm{nm}^{-1} \mathrm{~km}^{-1} \quad$
Also given spectral width $\Delta \lambda=20 \mathrm{~nm}, \mathrm{~L}=1 \mathrm{~km}$
$\therefore$ Pulse brodening $\Delta \tau=98.1 \times 1 \times 20=1960 \mathrm{ps} \mathrm{km}^{-1}=1.96 \mathrm{~ns} \mathrm{~km}^{-1}$