Solution:
We know that in the case of step index fiber, the fiber output. $n_2$ is less than the core refractive index $n_1$.
$
n_1=1.5 \text { and } n_1-n_2=1 \% \text { of } n_1=\frac{1}{100} \times 1.5=.015\\
$
$
n_2=1.5-0.015=1.485\\
$
Now the pulse dispersion for step-index fiber is,
$
\Delta T=\frac{n_1 L}{c}\left(\frac{n_1}{n_2}-1\right)\\
$
where L is the length of optical fiber, and c is the velocity of light.
$
\begin{aligned}
\therefore \quad \Delta T & =\frac{1.5 \times 6}{3 \times 10^5}\left(\frac{1.5}{1.485}-1\right) \quad\left(\because c=3 \times 10^5 \mathrm{~km} / \mathrm{sec}\right) \\\\
& =30.3 \times 10^{-3} \mathrm{sec}=30.3 \mathrm{~m} \mathrm{sec}\\
\end{aligned}
$
Thus, the delay difference between the slowest and fastest modes at the fiber output is $30.3 \mathrm{~m}$ sec.