Solution:
We know that for total internal reflection of a ray the angle of incident is given by,
$
\sin \alpha=\sqrt{n_1^2-n_2^2} \text { or } \alpha=\sin ^{-1}\left(n_1^2-n_2^2\right)^{1 / 2}
$,
(i) $n_1=1.6, n_2=1.5$
$
\alpha=\sin ^{-1} \sqrt{2.56-2.25}
$
$
\alpha \neq 33.83^{\circ}
$
(ii) $n_1=2.1, n_2=1.5$
$
\alpha=\sin ^{-1} \sqrt{4.41-2.25}
$
$
\dot{\alpha}=\infty
$
$\dot{\alpha}=\infty$
This means that total internal reflection is possible at all the angles, i.e., $0^{\circ}\lt$ $\alpha\lt90^{\circ}$
The angle $\alpha$ defines the light-gathering power of a fiber and is measured in terms of the numerical aperture (NA) of the fiber, i.e.,
$
\mathrm{NA}=\sqrt{n_1^2-n_2^2}
$
In first case, $\mathrm{NA}=0.55$ while is second case, $\mathrm{NA}=1.46$