Solution:
(a) At the core-cladding surface the critical angle is given by,
$
\phi_c=\sin ^{-1}\left(\frac{n_2}{n_1}\right)=\sin ^{-1}\left(\frac{1.46}{1.48}\right)=80.57^{\circ}
$
Therefore, the refracted ray at the entrance makes an angle of $90^{\circ}-\phi_c=9.43^{\circ}$ with the axis.
We know that if a ray makes an angle more than the critical angle at the core-cladding surface, the total internal reflection is possible.
So in our case for $\phi\lt9.43^{\circ}$, the total internal reflection is there in the fiber.
(b) We know that the total no. of internal reflection through a fiber of length L is,
$
n=\frac{L \tan \theta}{a}-1\\
$
Given,
$a=30 \mu \mathrm{m}$
$
=30 \times 10^{-6} \mathrm{~m}
$
$
=30 \times 10^{-9} \mathrm{~km}
$
$\theta=3.43^{\circ}$
$
n=\frac{1 \times \tan 3.43}{30 \times 10^{-9}}-1 \approx 2 \times 10^6-1 \approx 2 \times 10^6
$