0
2.4kviews
An LED operating at $850 \mathrm{~nm}$ has a spectral width of $45 \mathrm{~nm}$. What is the pulse spreading in $\mathrm{ns} / \mathrm{km}$ due to material dispersion?
1 Answer
0
659views
written 23 months ago by |
Solution:
λ = 850 nm
σ = 45 nm
pulse broadening due to material dispersion is given by,
$\sigma_m=\sigma L M$
$ \text { Material dispersion constant } D_{\text {mat }}=\frac{-\lambda}{c} \cdot \frac{d^2 n}{d \lambda^2} $
For LED sources operating at 850 nm,
$ \left|\lambda^2 \frac{d^2 n}{d \lambda^2}\right|=0.025 $
$ \begin{aligned} & \mathrm{M}=\frac{1}{\mathrm{c} \lambda}\left|\lambda^2 \frac{\mathrm{d}^2 \mathrm{n}}{\mathrm{d}\\\lambda^2}\right|=\frac{1}{\left(3 \times 10^5\right)(850)} \times 0.025 \\\\ & \mathrm{M}=9.8 \mathrm{ps} / \mathrm{nm} / \mathrm{km} \\\\ & \sigma_{\mathrm{m}}=\mathbf{4 4 1} \mathrm{ns} / \mathbf{k m}\\ \end{aligned} $
ADD COMMENT
EDIT
Please log in to add an answer.