Solution:
Given:
z = 12 km= 1.5 dB/km
P(0) = 0.3 µW
i) Attenuation in optical fiber is given by,
$
\begin{aligned}\\
& \alpha=10 \times \frac{1}{\mathrm{z}} \log \left(\frac{\mathrm{P}(0)}{\mathrm{P}(\mathrm{z})}\right) \\\\
& 1.5=10 \times \frac{1}{12} \log \left(\frac{0.3 \mu \mathrm{W}}{\mathrm{P}(\mathrm{z})}\right) \\\\
& \log \left(\frac{0.3 \mu \mathrm{W}}{\mathrm{P}(\mathrm{z})}\right)=\frac{1.5}{0.833}\\
\end{aligned}
$
$
\begin{aligned}
& \left(\frac{0.3 \mu \mathrm{W}}{\mathrm{P}(\mathrm{z})}\right)=10^{1.8} \\\\
& \mathrm{P}(\mathrm{z})=\left(\frac{0.3 \mu \mathrm{W}}{10^{1.8}}\right)=\frac{0.3}{63.0} \\\\
& \mathrm{P}(\mathrm{z})=4.76 \times 10^{-9} \mathrm{~W}\\
\end{aligned}\\
$
Optical power output= $4.76 \times 10^{-9} \mathrm{~W}$
ii) Input power:
α = 2.5 dB/km
$
\alpha=10 \times \frac{1}{\mathrm{z}} \log \left(\frac{\mathrm{P}(0)}{\mathrm{P}(\mathrm{z})}\right)\\
$
$
\begin{gathered}\\
2.5=10 \times \frac{1}{\mathrm{z}} \log \left(\frac{\mathrm{P}(0)}{4.76 \times 10^{-9}}\right) \\\\
\log \left(\frac{\mathrm{P}(0)}{4.76 \times 10^{-9}}\right)=\frac{2.5}{0.833}=3 \\\\
\frac{\mathrm{P}(0)}{4.76 \times 10^{-9}}=10^3=1000 \\\\
\mathrm{P}(0)=4.76 \mu \mathrm{W}\\
\end{gathered}
$
Input power= 4.76 µW