Solution:
$
\begin{aligned}
& P(0)=150 \mu \mathrm{W} \\\\
& z=10 \mathrm{~km} \\\\
& P(z)=-38.2 \mathrm{dBm} \Rightarrow\left\{\begin{array}{l}\\
-38.2=10 \log \frac{\mathrm{P}(\mathrm{z})}{1 \mathrm{~mW}} \\\\
\mathrm{P}(\mathrm{z})=0.151 \mu \mathrm{W} \\
\end{array}\right.\\
\end{aligned}
$
$
\alpha=10 \times \frac{1}{z} \log \left[\frac{P(0)}{P(z)}\right\rfloor
$
Attenuation in 1st window:
$
\alpha_1=10 \times \frac{1}{10} \log \left[\frac{150}{0.151}\right]\\
$
$
\alpha_1=2.99 \mathrm{~dB} / \mathrm{km}\\
$
Attenuation in 2nd window:
$
\begin{aligned}
& \alpha_2=10 \times \frac{1}{10} \log \left[\frac{150}{47.5}\right]\\ \\
& \alpha_2=\mathbf{0 . 4 9} \mathbf{d B} / \mathrm{km}\\
\end{aligned}\\
$
Attenuation in 3rd window:
$
\begin{aligned}
& \alpha_3=10 \times \frac{1}{10} \log \left[\frac{150}{75}\right]\\ \\
& \alpha_3=\mathbf{0 . 3 0} \mathbf{~ d B} / \mathbf{k m}\\
\end{aligned}
$
The wavelength in 1st window is 850 nm.
The wavelength in 2nd window is 1300 nm.
The wavelength in 3rd window is 1550 nm.