0
386views
Find the Initial and final Halves, $ x(z)=\frac{1+z^{-1}}{1-0.25 z^{-2}} $
1 Answer
0
21views
written 2.0 years ago by |
Solution:
Initial Value,
$ \begin{aligned} x(0) & =\operatorname{lt}_{z \rightarrow \infty} x(z) \\\\ & =\operatorname{lt}_{z \rightarrow \infty} \frac{1+z^{-1}}{1-0.25 z^{-2}}\\ \end{aligned}\\ $
$ =\frac{1+\infty^{-1}}{1-0.250^{-2}}=\frac{1+0}{1-0}=1\\ $
$x(0)=1$
Final Value,
$ \begin{aligned} x(\infty) & =\operatorname{lt}_{z \rightarrow 1}\left(1-z^{-1}\right) \times(z) \\\\ & =\operatorname{lt}_{z \rightarrow 1}\left(1-z^{-1}\right) \frac{\left(1+z^{-1}\right)}{1-0.25 z^{-2}}\\ \end{aligned} $
$ =\operatorname{lt}_{z \rightarrow 1} \frac{1-z^{-2}}{1-0.25 z^{-2}}\\ $
$ =\operatorname{lt}_{z \rightarrow 1} \frac{z^2-1}{z^2-25}\\ $
$ =\frac{1-1}{1-.25}=0\\ $
ADD COMMENT
EDIT
Please log in to add an answer.