Solution:
Step 1: Convert $x(z)$ to positive powers of z
$
x(z)=\cdot \frac{z^2}{z^2-1.5 z+0.5}\\
$
$
\begin{aligned}
\frac{x(z)}{z} & =\frac{z}{z^2-1.5 z+0.5} \\\\
& =\frac{z}{(z-1)(z-0.5)}\\
\end{aligned}\\
$
Step 2 =: Partal Fraction
$
\frac{x(z)}{z}=\frac{A}{z-1}+\frac{B}{z-0.5}
$
$
A=\left.(z-1) \cdot \frac{z}{(z-1)(z-0.5}\right|_{z=1}=\frac{1}{1-0.5}=2\\
$
$
B=\left.\frac{(z-0.5) z}{(z-1)(z-0.5)}\right|_{z=0.5}=\frac{.5}{.5-1}=-1\\
$
$
\frac{x(z)}{z}=\frac{z}{z-1}-\frac{1}{z-0.5}
$
$
\begin{aligned}
x(z) & =\frac{2 z}{z-1}-\frac{z}{z-0.5} \\\\
& =\frac{2}{1-z^{-1}}-\frac{1}{1-0.5 z^{-1}}\\
\end{aligned}\\
$