0
301views
Find DTFT of x(n)=sin(nθ)u(n)
1 Answer
0
4views

Solution:

x(n)=sin(nθ)u(n)

X(ejω)=n=0sin(nθ)ejωn

=n=0(ejθnejθn2j)ejωn

=12j(n=0ej(θω)nn=0ej(θ+ω)n)

=12j(11ej(θω)11ej(θ+ω))

=12j(1ej(θ+ω)1+ej(θω)12ejωcosθ+e2jω)

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.