0
301views
Find DTFT of x(n)=sin(nθ)u(n)
1 Answer
written 2.3 years ago by |
Solution:
x(n)=sin(nθ)u(n)
X(ejω)=∑∞n=0sin(nθ)e−jωn
=∑∞n=0(ejθn−e−jθn2j)e−jωn
=12j(∑∞n=0ej(θ−ω)n−∑∞n=0e−j(θ+ω)n)
=12j(11−ej(θ−ω)−11−e−j(θ+ω))
=12j(1−e−j(θ+ω)−1+ej(θ−ω)1−2e−jωcosθ+e−2jω) …