0
242views
Find inverse Fourier transform $X(j \Omega)=\delta(\Omega)$
1 Answer
written 23 months ago by |
Solution:
$ F^{-1}[X(j \Omega)]=F^{-1}[\delta(\Omega)]\\ $
$ x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega\\ $
$ =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(\Omega) e^{j \Omega t} d \Omega=\frac{1}{2 \pi}[1]\\ $
$ F^{-1}[\delta(\Omega)]=\frac{1}{2 \pi}\\ $