0
506views
Obtain Fourier series of the following full wave rectified sine wave shown in figure,

Obtain Fourier series of the following full wave rectified sine wave shown in the figure,

enter image description here

1 Answer
0
18views

Solution:

$ \boldsymbol{a}_0=\frac{2}{T} \int_0^{\frac{T}{2}} x(t) d t=\frac{2}{1} \int_0^{\frac{1}{2}} x(t) d t=\left[2 \int_0^{\frac{1}{2}} \sin \pi t d t\right]=2\left[-\frac{\cos \pi t}{\pi}\right]_0^{\frac{1}{2}}=-\frac{2}{\pi}\left[\cos \frac{\pi}{2}-\cos 0\right]=\frac{\mathbf{2}}{\boldsymbol{\pi}}\\ $

$ \boldsymbol{a}_{\boldsymbol{n}}=\frac{4}{T} \int_0^{\frac{T}{2}} x(t) \cos n \Omega_0 t d t=\frac{4}{1} \\\int_0^{\frac{1}{2}} \sin \pi t \cos n 2 \pi t d t=2 \int_0^{\frac{1}{2}}[\sin ((1+2 n) \pi t)+\sin ((1-2 n) \pi t)] d t $

$ \begin{aligned} = & 2\left[-\frac{\cos ((1+2 n) \pi t)}{(1+2 n) \pi}-\frac{\cos ((1-2 n) \pi t)}{(1-2 n) \pi}\right]_0^{\frac{1}{2}} \\\\ & =\frac{2}{\pi}\left[-\frac{\cos \left((1+2 n) \frac{\pi}{2}\right)}{1+2 n}-\frac{\cos \left((1-2 n) \frac{\pi}{2}\right)}{1-2 n}+\frac{1}{1+2 n}+\frac{1}{1-2 n}\right] \\\\ & =\frac{2}{\pi}\left[\frac{1}{1+2 n}+\frac{1}{1-2 n}\right]=\frac{2}{\pi}\left[\frac{1-2 n+1+2 n}{1-4 n^2}\right]=\frac{\mathbf{4}}{\boldsymbol{\pi}\left(\mathbf{1}-\mathbf{4 n}^2\right)}\\ \end{aligned}\\ $

$ \begin{gathered} x(t)=a_0+\sum_{n=1}^{\infty} a_n \cos n \Omega_0 t+\sum_{n=1}^{\infty} b_n \sin n \Omega_0 t \\\\ \therefore x(t)=\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{4}{\pi\left(1-4 n^2\right)} \cos n 2 \pi t \end{gathered}\\ $

Please log in to add an answer.