written 2.3 years ago by | • modified 2.3 years ago |
Find the trigonometric Fourier series for the periodic signal x(t) as shown in Figure,,
written 2.3 years ago by | • modified 2.3 years ago |
Find the trigonometric Fourier series for the periodic signal x(t) as shown in Figure,,
written 2.3 years ago by |
Solution:
Evaluation of, a0
a0=1T∫t0+Tt0x(t)dt=14[∫1−11dt+∫31−1dt]=14[[t]1−1−1[t]31]=14[(1−(−1))−(3−1)]=14[2−2]=0
Evaluation of ,an
an=2T∫t0+Tt0x(t)cosnΩ0tdt=24[∫1−1cosnΩ0tdt+∫31(−1)cosnΩ0tdt]=12[[sinnΩ0tnΩ0]1−1−[sinnΩ0tnΩ0]31]=12[[sinnπ2tnπ2]1−1−[sinnπ2tnπ2]31]
=12(2nπ)[sinnπ2−(sinnπ2(−1))−(sinnπ2(3)−sinnπ2)]=[1nπ][sinnπ2+sinnπ2−sin3nπ2+sinnπ2]=1nπ[3sinnπ2−sin(2nπ−nπ2)]=1nπ[3sinnπ2−(−sinnπ2)]=4nπ[sinnπ2]
Evaluation of, bn
bn=2T∫t0+Tt0x(t)sinnΩ0tdt=24[∫1−1sinnΩ0tdt+∫31−sinnΩ0tdt]
=12[[−cosnΩ0tnΩ0]1−1−[−cosnΩ0tnΩ0]31]=12[[−cosnπ2tnπ2]1−1+[cosnπ2tnπ2]31]=12[−2nπ(cosnπ2−cosnπ2(−1))+2nπ(cosnπ2(3)−cosnπ2)]=12[0+2nπ(cos(2nπ−nπ2)−cosnπ2)]=[1nπ(cosnπ2−cosnπ2)]=0
Trigonometric Fourier series,
x(t)=a0+∞∑n=1ancosnΩ0t+∞∑n=1bnsinnΩ0t=∞∑n=14nπsin(nπ2)cosnΩ0t=∞∑n=14nπsin(nπ2)cosnπ2t