0
4.3kviews
Determine if the following systems are time-invariant or time-variant. (i) $y(n)=x(n)+x(n-1)$ (ii) $y(n)=x(-n)$
1 Answer
written 23 months ago by |
Solution:
(i) $y(n)=x(n)+x(n-1)$
Given:
output of the system $y(n)=x(n)+x(n-1)$
If the input is delayed by ' $\mathrm{k}$ ' units in time, we have
$ y(n, k)=x(n-k)+x(n-k-1) $
If the output is delayed by ' k ' units in time, then $(n-\gtn-k)$
$ y(n-k)=x(n-k)+x(n-k-1) $
Here, $y(n, k)=y(n-k)$
Therefore, the system is time-invariant.
(ii) $y(n)=x(-n)$
Given:
output of the system $y(n)=x(-n)$
If the input is delayed by ' $\mathrm{k}$ ' units in time, we have,
$ y(n, k)=x(-n-k) $
If the output is delayed by ' k ' units in time, then (n->n-k)
$ y(n-k)=x(-n+k) $
Here, $y(n, k) \neq y(n-k)$
Therefore, the system is time-variant.