0
11kviews
Determine the 8-point DFT of the sequence x(n)={1,1,1,1,1,1,0,0}
1 Answer
0
1.5kviews

Solution:

X(k)=N1n=0x(n)ej2πkn/Nk=0,1,N1

For N=8

X(k)=7n=0x(n)ejπkn/4k=0,1,2..N1

For k=0

X(0)=7n=0x(n)X(0)=x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)=1+1+1+1+1+1+0+0=6

For k=1

X(1)=7n=0x(n)ejπn/4X(1)=x(0)+x(1)ejπ/4+x(2)ejπ/2+x(3)ej3π/4+x(4)ejπ+x(5)ej5π/4+x(6)ej3π/2+x(7)ej7π/4=1+0.707j0.707j0.707j0.70710.707+j0.707=0.707j1.707

For k=2

X(2)=7n=0x(n)ejπn/2X(2)=x(0)+x(1)ejπ/2+x(2)ejπ+x(3)ej3π/2+x(4)ej2π+x(5)ej5π/2+x(6)ej3π+x(7)ej7π/2=1j1+j+1j=1j

For k=3

X(3)=7n=0x(n)ej3πn/4X(3)=x(0)+x(1)ej3π/4+x(2)ejπ/2+x(3)ej9π/4+x(4)ej3π+x(5)ej15π/4+x(6)ej9//4+x(7)ej21π/4=10.707j0.707+j+0.707j0.7071+0.707+j0.707=0.707+j0.293

For k=4

X(4)=7n=0x(n)ejπnX(4)=x(0)+x(1)ejπ+x(2)ejπ2+x(3)ejπ3+x(4)ejπ4+x(5)ejπ5+x(6)ejπ6+x(7)ejπ7=11+11+11=0

For k=5

X(5)=7n=0x(n)ej5πn/4X(5)=x(0)+x(1)ej5π/4+x(2)ej5π/2+x(3)ej5πn/4+x(4)ej5π+x(5)ej25π/4+x(6)ej15π/2+x(7)ej35π/4=10.707+j0.707j+0.707+j0.7071+0.707j0.707=0.707j0.293

For k=6

X(6)=7n=0x(n)ej3πn/2X(6)=x(0)+x(1)ej3π/2+x(2)ej3π+x(3)ej9π/2+x(4)ej6π+x(5)ej15π+x(6)ej9π+x(7)ej21π/2=1+j1j+1+j=1+j

For k=7

X(7)=7n=0x(n)ej7πn/4

X(7)=x(0)+x(1)ej7π/4+x(2)ej7π/2+x(3)ej21π/4+x(4)ej7π+x(5)ej35π/4+x(6)ej21π/2+x(7)ej49π/4=1+0.707+j0.707+j0.707+j0.70710.707j0.707=0.707+j1.707X(K)={6,0.707j1.707,1j,0.707+j0.293,0,0.707j0.293,1+j,0.707+j1.707}

Please log in to add an answer.