0
1.1kviews
The length of an FIR filter is 7. If this filter has a linear phase, show that N1n=0h(n)sin(αn)ω=0 is satisfied.
1 Answer
0
153views

Solution:

The length of the filter is 7. Therefore, for the linear phase,

α=N12=712=3

$ \begin{aligned}\\ \sum_{n=0}^{N-1} h(n) \sin (\alpha-n) \omega= & \sum_{n=0}^6 h(n) \sin (3-n) \omega \\\\ = & h(0) \sin 3 \omega+h(1) \sin 2 \omega+h(2) \sin \omega+h(3) \sin 0+h(4) \sin (-\omega) \\\\ & +h(5) \sin (-2 …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.