Solution:
Step 1 Bilinear transformation is to be used.
Step 2 Attenuation constant
$$
\varepsilon=\left[\frac{1}{A_1^2}-1\right]^{-\frac{1}{2}}=\left[\frac{1}{(0.891)^2}-1\right]^{-\frac{1}{2}}=0.509
$$
Step 3 Ratio of analog edge frequencies
$$
\frac{\Omega_2}{\Omega_1}=\frac{\frac{2}{T} \tan \frac{\omega_2}{2}}{\frac{2}{T} \tan \frac{\omega_1}{2}}=\frac{\tan \frac{0.35 \pi}{2}}{\tan \frac{0.3 \pi}{2}}=1.2
$$
Step 4 Order of the filter
$$
\begin{aligned}
& N \geq \frac{\cosh ^{-1}\left[\frac{1}{\varepsilon}\left(\frac{1}{A_2^2}-1\right)^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_2}{\Omega_1}\right)} \geq \frac{\cosh ^{-1}\left[\frac{1}{0.509}\left(\frac{1}{0.001^2}-1\right)^{\frac{1}{2}}\right]}{\cosh ^{-1}(1.2)} \\
& \geq 13.338 \approx 14
\end{aligned}
$$
So the lowest order of the filter is N=14.