Solution:
Let T = 1 and bilinear transformation is used
$
\varepsilon=\left[\frac{1}{A_1^2}-1\right]^{\frac{1}{2}}=\left[\frac{1}{0.707^2}-1\right]=1\\
$
The ratio of analog frequencies,
$
\frac{\Omega_2}{\Omega_1}=\frac{\frac{2}{T} \tan \frac{\omega_2}{2}}{\frac{2}{T} \tan \frac{\omega_1}{2}}=\frac{\tan \frac{0.45 \pi}{2}}{\tan \frac{0.2 \pi}{2}}=2.628\\
$
$
N \geq \frac{\cosh ^{-1}\left\{\frac{1}{\varepsilon}\left[\frac{1}{A_2^2}-1\right]^{-\frac{1}{2}}\right\}}{\cosh ^{-1}\left\{\frac{\Omega_2}{\Omega_1}\right\}}\\
$
$
\begin{aligned}
& \geq \frac{\cosh ^{-1}\left\{\frac{1}{1}\left[\frac{1}{0.0562^2}-1\right]^{\frac{1}{2}}\right\}}{\cosh ^{-1}(2.628]} \\
& \geq \frac{3.569}{1.621} \geq 2.20 \approx 3 \\
& \Omega_c=\frac{\Omega_1}{\left[\frac{1}{A_1^2}-1\right]^{1 / 2 N}}=\frac{\frac{2}{T} \tan \frac{\omega_1}{2}}{\left[\frac{1}{0.707^2}-1\right]^{1 / 6}}=1.708
\end{aligned}
$
Analog filter transfer function for N = 3.
$
\begin{gathered}
H_a(s)=\frac{B_0 \Omega_c}{s+c_0 \Omega_c} \frac{B_1 \Omega_c^2}{s^2+b_1 \Omega_c s+c_1 \Omega_c^2} \\
y_N=\frac{1}{2}\left\{\left[\left(\frac{1}{\varepsilon^2}+1\right)^{\frac{1}{2}}+\frac{1}{\varepsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\varepsilon^2}+1\right)^{\frac{1}{2}}+\frac{1}{\varepsilon}\right]^{\frac{-1}{N}}\right\} \\
y_N=\frac{1}{2}\left\{\left[\left(\frac{1}{1^2}+1\right)^{\frac{1}{2}}+\frac{1}{1}\right]^{\frac{1}{3}}-\left[\left(\frac{1}{1^2}+1\right)^{\frac{1}{2}}+\frac{1}{1}\right]^{\frac{-1}{3}}\right\}=0.5959
\end{gathered}
$
$
\begin{aligned}
& c_0=y_N=0.5959 \\\\
& b_1=2 y_N \sin \left[\frac{(2 \times 1-1) \pi}{2 N}\right]=2 \times 0.5959 \sin \frac{\pi}{6}=0.5959\\ \\
& c_1=y_N^2+\cos ^2 \frac{(2 \times 1-1) \pi}{2 N}=0.5959^2+\cos ^2 \frac{\pi}{6}=1.105\\
\end{aligned}
$
$
\prod_{k=0}^{(N-1) / 2} \frac{B_k}{c_k}=1\\
$
$
\begin{aligned}
\therefore \quad B_0=c_0 & =0.5959, \quad B_1=c_1=1.105 \\\\
H_a(s) & =\left(\frac{0.5959 \times 1.708}{s+0.5959 \times 1.708}\right)\left(\frac{1.105(1.708)^2}{s^2+0.5959 \times 1.708 s+1.105(1.708)^2}\right) \\\\
& \cdot\left(\frac{1.01}{s+1.01}\right)\left(\frac{3.223}{s^2+1.01 s+3.223}\right)\\
\end{aligned}
$
Using bilinear transformation, H(z) is given by
$
\begin{aligned}\\
H(z) & =H_a(s)\left|s=\frac{21-z^{-1}}{1+z^{-1}}=\left(\frac{1.01}{s+1.01}\right)\left(\frac{3.223}{s^2+0.1 s+3.223}\right)\right|_{s=2 \frac{1-z^{-1}}{1+z^{-1}}} \\\\
& =\frac{3.25}{\left[2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+1.01\right]\left[2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2+0.1 \times 2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+3.223\right]} \\\\
& =\frac{(3.25)\left(1+z^{-1}\right)^3}{7.423-1.554 z^{-1}+7.023 z^{-2}}\\
\end{aligned}
$