Solution:
The type of transformation is not specified. Let us use bilinear transformation,
$
\frac{\Omega_2}{\Omega_1}=\frac{\frac{2}{T} \tan \frac{\omega_2}{2}}{\frac{2}{T} \tan \frac{\omega_1}{2}}=\frac{\frac{2}{1} \tan \frac{0.3 \pi}{2}}{\frac{2}{1} \tan \frac{0.2 \pi}{2}}=\frac{1.019}{0.649}=1.57\\
$
$
\begin{aligned}
N & \geq \frac{1}{2} \frac{\log \left\{\left[\frac{1}{A_2^2}-1\right] /\left[\frac{1}{A_1^2}-1\right]\right\}}{\log \left(\frac{\Omega_2}{\Omega_1}\right)} \\\\
& \geq \frac{1}{2} \frac{\log \left\{\left[\frac{1}{0.177^2}-1\right] /\left[\frac{1}{0.944^2}-1\right]\right\}}{\log (1.57)} \\\\
& \geq 6.16 \approx 7\\
\end{aligned}
$
So the order of the low-pass Butterworth filter is N = 7.