Solution:
$
\begin{aligned}
\Omega_c & =\frac{2}{T} \tan \frac{\omega_c}{2}=2 \tan (0.2 \pi)=1.45 \\\\
H_a(s) & =\frac{1}{\left(\frac{s}{1.45}\right)^2+1.414\left(\frac{s}{1.45}\right)+1}=\frac{(1.45)^2}{s^2+2.055 s+(1.45)^2} \\\\
H(z) & =H_a(s) s=\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\\
\end{aligned}
$
$
\begin{aligned}
H(z) & =\frac{2.1}{\frac{4\left(1-z^{-1}\right)^2}{\left(1+z^{-1}\right)^2}+(2.055) 2 \frac{\left(1-z^{-1}\right)}{1+z^{-1}}+2.1} \\\\
& =\frac{2.1\left(1+z^{-1}\right)^2}{4\left(1-z^{-1}\right)^2+4.11\left(1-z^{-2}\right)+2.1\left(1+z^{-1}\right)^2} \\\\
& =\frac{2.1\left(1+z^{-1}\right)^2}{4\left(1-2 z^{-1}+z^{-2}\right)+4.11\left(1-z^{-2}\right)+2.1\left(1+2 z^{-1}+z^{-2}\right)} \\\\
& =\frac{2.1\left(1+z^{-1}\right)^2}{10.21-3.8 z^{-1}+1.99 z^{-2}} \\\\
& =\frac{0.2\left(1+z^{-1}\right)^2}{1-0.37 z^{-1}+0.195 z^{-2}}\\
\end{aligned}
$