Solution:
Given,
$
\begin{array}{lll}
\Omega_p=20 & \mathrm{rad} / \mathrm{sec} ; & \alpha_p=2.5 \mathrm{~dB} \\
\Omega_s=50 & \mathrm{rad} / \mathrm{sec} ; & \alpha_s=30 \mathrm{~dB}
\end{array}
$
We know about,
$
\begin{aligned}
N & =\frac{\cosh ^{-1} \lambda / \varepsilon}{\cosh ^{-1} 1 / k} \\\\
\lambda & =\sqrt{10^{0.1 \alpha_s}-1}=31.607 \\\\
\varepsilon & =\sqrt{10^{0.1 \alpha_p}-1}=0.882 \\\\
k & =\frac{\Omega_p}{\Omega_s}=0.4\\
\end{aligned}\\
$
After,
$
N \geq \frac{\cosh ^{-1} \frac{31.607}{0.882}}{\cosh ^{-1} \frac{1}{0.4}}=2.726
$
Then N = 3,
$
\begin{aligned}
\mu & =\varepsilon^{-1}+\sqrt{1+\varepsilon^{-2}}=2.65 \\\\
a & =\Omega_p \frac{\left[\mu^{1 / N}-\mu^{-1 / N}\right]}{2}=6.6 \\\\
b & =\Omega_p\left[\frac{\mu^{1 / N}+\mu^{-1 / N}}{2}\right]=21.06 \\\\
s_k & =a \cos \phi_k+j b \sin \phi_k ; \quad k=1,2,3 \\\\
\phi_k & =\frac{\pi}{2}+\left(\frac{2 k-1}{2 N}\right) \pi ; \quad k=1,2,3 \\\\
\phi_1 & =120^{\circ}, \phi_2=180^{\circ}, \phi_3=240^{\circ} \\\\
s_1 & =-3.3+j 18.23 \\\\
s_2 & =-6.6 \\\\
s_3 & =-3.3-j 18.23 \\
\end{aligned}
$
Denominator of ,
$H(s)=(s+6.6)\left(s^2+6.6 s+343.2\right)$
Numerator of.
$H(s)=(6.6)(343.2)=2265.27$
Transfer function .
$H(s)=\frac{2265.27}{(s+6.6)\left(s^2+6.6 s+343.2\right)}$