Solution:
From the given data we can find,
$
\begin{aligned}
& \Omega_p=2 \pi \times 1000 \mathrm{~Hz}=2000 \pi \mathrm{rad} / \mathrm{sec} \\
& \Omega_s=2 \pi \times 2000 \mathrm{~Hz}=4000 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$
Step: 1
$
\begin{aligned}
N \geq \frac{\cosh ^{-1} \sqrt{\frac{10^{0.1 \alpha_s}-1}{10^{0.1 \alpha_p}-1}}}{\cosh ^{-1} \frac{\Omega_s}{\Omega_p}} & =\cosh ^{-1} \frac{\sqrt{\frac{10^{1.6}-1}{10^{0.3}-1}}}{\cosh ^{-1} \frac{4000 \pi}{2000 \pi}} \\
& =1.91
\end{aligned}
$
Step 2: Rounding N to the next higher value we get $N=2$.
For N even, the oscillatory curve starts from $\frac{1}{\sqrt{1+\varepsilon^2}}$.
Step 3: The values of the minor axis and major axis can be found below,
$
\begin{aligned}
& \varepsilon=\left(10^{0.1 \alpha_p}-1\right)^{0.5}=\left(10^{0.3}-1\right)^{0.5}=1 \\\\
& \mu=\varepsilon^{-1}+\sqrt{1+\varepsilon^{-2}}=2.414 \\\\
& a=\Omega_p \frac{\left[\mu^{1 / N}-\mu^{-1 / N}\right]}{2}=2000 \pi \frac{\left[(2.414)^{1 / 2}-(2.414)^{-1 / 2}\right]}{2}=910 \pi \\\\
& b=\Omega_p \frac{\left[\mu^{1 / N}+\mu^{-1 / N}\right]}{2}=2000 \pi \frac{\left[(2.414)^{1 / 2}+(2.414)^{-1 / 2}\right]}{2}=2197 \pi\\
\end{aligned}
$
$
\begin{aligned}
s_k & =a \cos \phi_k+j b \sin \phi_k, \quad k=1,2 \\\\
\phi_k & =\frac{\pi}{2}+\frac{(2 k-1) \pi}{2 N} \quad k=1,2 \\\\
\phi_1 & =\frac{\pi}{2}+\frac{\pi}{4}=135^{\circ} \\\\
\phi_2 & =\frac{\pi}{2}+\frac{3 \pi}{4}=225^{\circ} \\\\
s_1 & =a \cos \phi_1+j b \sin \phi_1=-643.46 \pi+j 1554 \pi \\\\
s_2 & =a \cos \phi_2+j b \sin \phi_2=-643.46 \pi-j 1554 \pi\\
\end{aligned}\\
$
Step 5:
The denominator of $H(s)=(s+643.46 \pi)^2+(1554 \pi)^2$
Step 6:
The numerator of $H(s)=\frac{(643.46 \pi)^2+(1554 \pi)^2}{\sqrt{1+\varepsilon^2}}=(1414.38)^2 \pi^2$
The transfer function $H(s)=\frac{(1414.38)^2 \pi^2}{s^2+1287 \pi s+(1682)^2 \pi^2}$.