Solution:
$
\begin{aligned}
& \frac{1}{\sqrt{1+\varepsilon^2}}=0.8 \Rightarrow \varepsilon=0.75 \\\\
& \frac{1}{\sqrt{1+\lambda^2}}=0.2 \Rightarrow \lambda=4.899\\
\end{aligned}
$
Ws $=0.6$ pi rad: $w_p=0.2$ pi rad . then assume $\mathrm{T}=1 \mathrm{sec}$
$
\frac{\omega_{\mathrm{s}}}{\omega_{\mathrm{p}}}=\frac{\Omega_{\mathrm{s}} \mathrm{T}}\\{\Omega_{\mathrm{p}} \mathrm{T}}=\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{p}}}=\frac{0.6 \pi}{0.2 \pi}=3\\
$
$
\mathrm{N} \geq \frac{\log \left(\frac{\lambda}{\varepsilon}\right)}{\log \left(\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{p}}}\right)} \geq \frac{\log \left(\frac{4.899}{0.75}\right)}{\log 3} \geq 1.71\\
$
For $\mathrm{N}=2$ the transfer function of normalized Butterworth filter is
$
\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}^2+\sqrt{2} \mathrm{~s}+1}\\
$
Cut off frequency,
$
\begin{aligned}
& \Omega_{\mathrm{c}}=\frac{\Omega_{\mathrm{p}}}{(\varepsilon)^{1 / \mathrm{N}}}=\frac{0.2 \pi}{(0.75)^{1 / \mathrm{N}}}=0.231 \pi \\
& \mathrm{H}_{\mathrm{a}}(\mathrm{s})=\left.\mathrm{H}(\mathrm{s})\right|_{\mathrm{s} \rightarrow \frac{\mathrm{s}}{}} ^{\Omega_{\mathrm{c}}} \\
& =\frac{0.5266}{(\mathrm{~s}+0.51+\mathrm{j} 0.51)(\mathrm{s}+0.51-\mathrm{j} 0.51)}
\end{aligned}
$
Using the impulse invariant method, if
$
\begin{aligned}
& \mathrm{H}_{\mathrm{a}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{\mathrm{c}_{\mathrm{k}}}{\mathrm{s}-\mathrm{p}_{\mathrm{k}}} \\\\
& \mathrm{H}(\mathrm{z})=\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{\mathrm{c}_{\mathrm{k}}}{1-\mathrm{e}^{\mathrm{p}_{\mathrm{k}} \mathrm{T}} \mathrm{z}^{-1}} \\\\
& \mathrm{H}(\mathrm{z})=\frac{\mathrm{j} 0.516}{1-\mathrm{e}^{-0.51-\mathrm{j} 0.51} \mathrm{z}^{-1}}-\frac{\mathrm{j} 0.516}{1-\mathrm{e}^{-0.51+\mathrm{j} 0.51} \mathrm{z}^{-1}}\\
\end{aligned}
$
By solving,
$
\mathrm{H}(\mathrm{z})=\frac{0.3022}{1-1.047 \mathrm{z}^{-1}+0.36 \mathrm{z}^{-2}}\\
$