Solution:
$
\begin{aligned}
& \Omega_{\mathrm{p}}=0.2 \pi ; \quad \Omega_{\mathrm{s}}=0.4 \pi \\
& \frac{1}{\sqrt{1+\varepsilon^2}}=0.9 \Rightarrow \varepsilon=0.4843 \\
& \frac{1}{\sqrt{1+\lambda^2}}=0.2 \Rightarrow \lambda=4.899
\end{aligned}
$
$
\mathrm{N} \geq \frac{\log \left(\frac{\lambda}{\varepsilon}\right)}{\log \left(\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{p}}}\right)} \geq 3.34
$
$\mathrm{N}=4$
$
\mathrm{H}(\mathrm{s})=\frac{1}{\left(\mathrm{~s}^2+0.76537 \mathrm{~s}+1\right)\left(\mathrm{s}^2+1.8477 \mathrm{~s}+1\right)}
$
Cut off frequency,
$
\Omega_c=\frac{\Omega_p}{\varepsilon^{1 / N}}=0.24 \pi
$
Obtain transfer function by substituting s by,
$
\frac{\mathrm{s}}{\Omega_{\mathrm{c}}}=\frac{\mathrm{s}}{0.24 \pi}
$
$
\mathrm{H}(\mathrm{s})=\frac{0.323}{\left(\mathrm{~s}^2+0.577 \mathrm{~s}+0.0576 \pi^2\right)\left(\mathrm{s}^2+1.393 \mathrm{~s}+0.0576 \pi^2\right)}
$