written 2.0 years ago by |
Solution:
To demonstrate the eigenfunction property of complex exponentials for discrete-time systems, consider an input sequence $x[n]=e^{j \omega n}$ for $-\infty\ltn\lt\infty$, i.e., a complex exponential of radian frequency $\omega$.
The corresponding output of a linear time-invariant system with impulse response h[n] is,
$$ \begin{aligned}\\ y[n] & =\sum_{k=-\infty}^{\infty} h[k] e^{j \omega(n-k)} \\\\ & =e^{j \omega n}\left(\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}\right) ...(1)\\ \end{aligned} $$
If we define,
$$ H\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}...(2), $$
Eq. (2) becomes,
$$ y[n]=H\left(e^{j \omega}\right) e^{j \omega n} ...(3). $$
Consequently, $e^{j \omega n}$ is an eigenfunction of the system, and the associated eigenvalue is $H\left(e^{j \omega}\right)$. From Eq. (3), we see that $H\left(e^{j \omega}\right)$ describes the change in complex amplitude of a complex exponential input signal as a function of the frequency $\omega$.
The eigenvalue $H\left(e^{j \omega}\right)$ is called the frequency response of the system. In general, $H\left(e^{j \omega}\right)$ is complex and can be expressed in terms of its real and imaginary parts as,
$$ H\left(e^{j \omega}\right)=H_R\left(e^{j \omega}\right)+j H_I\left(e^{j \omega}\right)...(4) $$
or in terms of magnitude and phase as,
$$ H\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right| e^{j H\left(e^{j \omega}\right)} ..(5) $$